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Abstract— Achieving the attractive error-correcting capability
with a simple decoder structure, the polar code using successive
cancellation (SC) decoding is now expected to be installed at
the resource-limited IoT or embedded communications. However,
the existing SC decoders normally suffer from the long processing
latency caused by the serialized processing steps, limiting the
practical applications of polar codes. In this article, to solve
this latency problem, we present a new low-complexity merging
operation that can increase the number of parallel factors for
realizing the tree-level parallelism. We also modify the previous
pruning method to further reduce the number of visited nodes at
the parallel SC decoding scenario. In addition, a novel parallel
partial-sum calculator (PSC) architecture is introduced to update
partial-sum registers with multiple decoded bits by taking only
one processing cycle. Implementation results show that the
proposed 8-parallel SC polar decoder in 28-nm CMOS requires
only 0.140 µs to decode a (1024, 512) codeword of 5G system,
remarkably reducing the decoding latency when compared to the
state-of-the-art designs.

Index Terms— 5G communications, low-latency processing,
parallel decoder, polar codes, successive-cancellation decoding.

I. INTRODUCTION

AFTER Arikan’s remarkable work [1], the polar code has
been popularly researched due to its attractive perfor-

mance even for short-length codewords, and consequently,
it has been considered in recent applications, such as 5G
new radio (NR) systems [2] and IoT communications [3].
For decoding the transmitted polar codeword, the successive
cancellation (SC) algorithm is normally utilized at first for
providing the reasonable error-correcting capability with low
computational complexity [1], [4]. However, it is well known
that the conventional SC decoding suffers from a long process-
ing delay caused by the serialized internal decoding orders
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[1], consequently increasing the overall decoding time of SC-
based list (SCL) decoding methods enhancing the correcting
performance further [5]–[11]. Therefore, it is still urgent to
develop the practical low-latency processing scenario of SC
decoding for realizing the cost-effective SC decoder itself at
lightweight communication protocols [12] or the fast baseline
architecture of SCL decoder at 5G NR solutions [13].

To solve this latency problem, a number of studies have
recently reported simplifying a decoding tree, which concep-
tually represents the computing procedure of SC algorithm
[14]–[19]. For example, the 2-b SC decoding in [14] reduces
the number of the visited nodes by combining two leaves
having the same parent. By considering patterns of consecutive
leaf nodes, furthermore, the simplified SC (SSC) decoding
algorithm in [15] remarkably reduces the decoding latency
by pruning nodes having leaves of all-frozen bits (Rate-0)
and all-information bits (Rate-1). Based on the SSC decoding,
the work in [16] reveals that the node with mixed leaf patterns
can also be pruned by applying the maximum likelihood (ML)
decoding. However, the ML-based decoding cannot be used
for eliminating the upper-level nodes due to the impractical
amount of computational complexity. Instead of exploiting
the complex ML function, the recent Fast-SSC algorithm in
[17] introduces the dedicated cost-effective functions only for
the frequently occurring patterns, i.e., the repetition (REP)
and the single parity-check (SPC) patterns, which results in
a significant reduction of the decoding latency.

However, the previous approaches are all based on the
original decoding tree, which visits the processing nodes
in order, and they are potentially limited by the serialized
steps increasing the decoding latency. Therefore, the recent
cutting-edge approaches have presented the concept of tree-
level parallelism that breaks the original decoding tree into
several small-sized sub-trees, theoretically supporting the par-
allel decoding operations [20]–[23]. As the straightforward
parallel decoding requires the complex ML-like merging oper-
ations at the end of each sub-tree operation for calculating
the hard-decision estimates in parallel, the previous works
have developed the divide-and-conquer method for relaxing
the computational costs of parallel SC decoder architecture
[21], [23]. For the parallel decoding scenario, nevertheless,
the previous architectures are still inefficient in terms of
decoding latency as the parallel hard-decision estimates use
multiple processing cycles for calculating partial-sum values
that should be updated before activating the next decoding step
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[11], [23]–[25]. There are few works for allowing multibit
updates for partial-sum values [26], [27], but those designs
are suitable for the serialized SC decoding, requiring a huge
amount of hardware complexity to support the parallel SC
decoding with tree-level parallelism.

Based on our previous work [28], this article introduces
several optimization schemes that can realize the ultralow-
latency parallel SC polar decoder. For the generalized parallel
decoder architecture, we first define the single-cycle merging
functions for major leaf-level patterns of parallel sub-trees. As
each function provides the dedicated processing path for one
leaf-level pattern, it is possible to shorten the critical path when
compared to the previous works handling a number of patterns
with a single merging function [23]. For the minor leaf-level
patterns, which cannot be supported at the prior approaches,
the proposed method newly utilizes the recursive sub-parallel
operations by allowing additional processing cycles. In addi-
tion to the simplified merging function, we modify the previ-
ous low-latency optimizations schemes for the single decoding
tree to be suitable for the proposed parallel SC decoder design.
More precisely, we limit the freedom of pruning patterns in
the previous works [17], generating the pruned but identical
parallel sub-trees. The novel parallel partial-sum calculator
(PSC) is also developed from the previous multibit PSC by
sharing the common processing units as many as possible.
Targeting the recent 5G NR specification [29], for the case
study, an 8-parallel 1024-b polar decoder is implemented in
28-nm CMOS technology. Applying to the proposed tree-level
parallelism supported by the dedicated decoder architecture,
the prototype design operates at the speed of 950 MHz, and
takes only 133 processing cycles for handling a 0.5-rate 1024b
codeword, reducing the decoding latency by 32.8% when
compared to the previous state-of-the-art solution.

The remainder of this article is organized as follows. We
first describe the backgrounds of this work in Section II, and
the proposed merging unit (MU) with tree-level parallelism
is presented in Section III. The modified parallel sub-tree
pruning and the parallel PSC architecture are newly introduced
for further reducing the processing cycles in Sections VI and
V, respectively. Applying the proposed ideas, the implementa-
tion results of the 8-parallel prototype decoder are summarized
and compared to the previous works in Section VI. Finally,
concluding remarks are made in Section VII.

II. BACKGROUNDS

A. Polar Codes and SC Decoding

An (N , K ) polar code is defined as a linear block code of
N transferred bits protecting K information bits. Before the
encoding process, the message vector u = [u0, u1, . . . , uN−1]
is generated by assigning the K information bits to the K most
reliable channels over N channels, which are constructed by
using the channel polarization phenomenon. The remaining
bits, i.e., frozen bits, are then set to the fixed values known to
both the encoder and the decoder, which are generally selected
to all zeros [30]. As described in [1], the encoding process of
polar code is denoted as a multiplication of a 1 × N message
vector u and a N × N generate matrix G⊗m , i.e., x = uG⊗m ,

Fig. 1. Example of the SC decoding tree for a (16,10) polar code.

where m = log2 N , G =
[

1 0
1 1

]
, and G⊗m is the mth

Kronecker power of the polarizing matrix G.
After transferring the codeword vector x through the

noisy channel, the polar decoder observes the 1 × N vec-
tor y, and then starts to estimate the message bits û =
[û0, û1, . . . , ûN−1]. For a polar code of length N , it is well
known that the processing steps of the conventional SC decod-
ing algorithm can be represented as a log2 N-depth binary
decoding tree [15]. For the case of (16, 10) polar code,
Fig. 1 illustrates the conceptual diagram of the SC decoding
tree, where the black, white, and gray nodes represent the
nodes having all-information, all-frozen, and mixed leaves,
respectively. To represent the SC decoding process in detail,
let Vi, j be the j th node in each i th stage on the decoding
tree, having Li = 2m−i leaf nodes. A node Vi, j receives a
soft-value vector Ai, j = [αi, j

0 , α
i, j
1 , . . . , α

i, j
Li −1] generated by

its parent node and returns an estimated hard-value vector
Bi, j = [β i, j

0 , β
i, j
1 , . . . , β

i, j
Li −1]. Note that the soft-value vector

A0,0 of the root node V0,0 is initialized by using the received
vector y as follows:

α0,0
l = log

(
Pr(yl|xl = 0)

Pr(yl |xl = 1)

)
, 0 ≤ l ≤ N − 1. (1)

In the SC decoding algorithm, the node Vi, j transmits the
new soft-value vectors, i.e., Ai+1,2 j and Ai+1,2 j+1 to left child
and right child nodes, respectively. More precisely, the ele-
ments of two soft-value vectors are calculated as follows:

α
i+1,2 j
l = F

(
α

i, j
l , α

i, j
l+Li+1

)
α

i+1,2 j+1
l = G

(
α

i, j
l , α

i, j
l+Li+1

, β
i+1,2 j
l

)
(2)

where l denotes the index of each vector, satisfying 0 ≤ l ≤
Li+1 −1. With the hardware-friendly algorithm in [31], F and
G are defined as

F(x, y) = sgn(x)sgn(y)min(|x |, |y|)
G(x, y, u) = (−1)ux + y (3)

where sgn(x) returns 1 if x ≥ 0 and −1 otherwise. After
receiving the hard-value vectors Bi+1,2 j and Bi+1,2 j+1 from left
and right child nodes, respectively, the node Vi, j then generates
the new hard-value vector Bi, j , i.e., a partial-sum vector by
performing the following calculations:

β
i, j
l = β

i+1,2 j
l ⊕ β

i+1,2 j+1
l

β
i, j
l+Li+1

= β
i+1,2 j+1
l . (4)
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Fig. 2. Concept of p-parallel SC decoding [20].

At the j th leaf node Vm, j , note that the hard-value vector Bm, j

is nothing but an estimated bit, i.e., Bm, j = [βm, j
0 ] = [û j ],

which can be computed as

û j = β
m, j
0 =

{
0, if j ∈ F or α

m, j
0 ≥ 0

1, otherwise
(5)

where F stands for the set consisting of the indices of frozen-
bit positions. The conventional SC decoding is then finished
when the right-most leaf node Vm,N−1 computes the final hard-
decision estimate, and the decoded output û is finally estimated
as [βm,0

0 , βm,1
0 , . . . , βm,N−1

0 ].
As the G operation of the node Vi, j requires partial-sums

generated by the previous estimated bits denoted as a vector
form Bi+1,2 j , the conventional SC decoding generally suffers
from the long processing delay due to the serialized decoding
orders. To reduce the decoding latency, the works [14]–[19]
present the pruning-based SC decoding algorithms, which
prune the sub-trees having some patterns of consecutive leaf
nodes. In particular, the Fast-SSC decoding in [17] uses the
low-complexity pruning methods for four patterns of consec-
utive leaf nodes: Rate-0, Rate-1, REP, and SPC patterns. Note
that the pruned tree for the four patterns provides the same
error-correcting performance as the original tree and signif-
icantly reduces the number of visited nodes, leading to the
low-latency decoding compared to the original SC algorithm.
However, the pruning-based approaches are also based on
the original SC decoding tree and still have latency limita-
tions from the serialized processing orders of the decoding
tree.

B. Parallel SC Decoding With Multiple Sub-Trees

To solve the limitation of serialized processing steps,
the parallel polar decoding approaches are introduced in [20],
[22], [23]. Instead of handling a large-sized decoding tree,

more precisely, the work in [20] introduces p small-sized sub-
trees by decomposing the original one, which can be processed
in parallel. Fig. 2 depicts the concept of the p-parallel SC
decoding process, where p is typically a power of two. Note
that each sub-tree contains N/p leaf nodes from the original
tree, constructing a binary tree architecture of m ′ = m − log2 p
levels. In other words, a sub-tree contains L ′

i = 2m′−i leaf
nodes. In this article, for the sake of simplicity, a node
in the kth parallel tree is denoted as V (k)i, j where 0 ≤
k ≤ p − 1. Note that the leaf node V (k)m′, j corresponds
to the leaf node Vm,pj+k in the original tree. Similar to the
processing of the original SC tree, each node of parallel
sub-trees receives an 1×L ′

i soft-value vector A(k)i, j from its
parent node, and then returns the hard-value estimate B(k)i, j .
To initialize multiple root nodes, i.e., V (k)0,0, we define the
first soft-value vector for each sub-tree, which is denoted
as A(k)0,0, by selecting N/p values from A0,0 in a round-
robin fashion. More precisely, the lth element of A(k)0,0

becomes α(k)0,0
l = α0,0

pl+k . After the initializing process, all the
sub-trees start the conventional SC decoding simultaneously.
Whenever the decoding step reaches a leaf node of each
sub-tree at the same time, the p soft values of V (k)m′, j are
collected to construct a vector R j = [r j

0 , r j
1 , . . . , r j

p−1] =
[α(0)

m′, j
0 , α(1)

m′, j
0 , . . . , α(p−1)

m′, j
0 ] for activating the merging

function in Fig. 2. The merging function shown is applied
to the soft-value vector R j for estimating an 1 × p hard-
value vector, which is denoted as T j = [t j

0 , t j
1 , . . . , t j

p−1]
where t j

k = β(k)
m′, j
0 . It is required to find the vector T j that

maximizes the following cost function:

C(R j , T j ) =
p−1∑
k=0

(
1 − 2t j

k

)
r j

k . (6)

Similar to the conventional SC decoding, after estimating
the hard-value vector, the parallel sequence of decoded infor-
mation can be generated at a time by multiplying G⊗log2 p,
i.e., [û pj , û pj+1, . . . , û pj+p−1] = T j G⊗log2 p. Although the pre-
vious parallel SC decoding algorithm potentially reduces the
number of processing cycles by utilizing the parallel sub-tree
architecture, the direct implementation may cause even a slow
decoder realization due to the long critical delay of merging
function [20]. More precisely, for finding the maximum cost
value of (6), we have to evaluate at most 2p cases of T j

for the given R j , resulting in p2p multiplications, (p − 1)2p

additions, and 2p − 1 comparisons, requiring a tremendous
amount of computing costs especially for the large parallel
factor p. In order to mitigate the computational overheads,
the prior work from [23] reduces the complexity of the
merging function by using a divide-and-conquer method that
considers few possible combinations of T j for evaluating (6).
However, the previous method still requires time-consuming
sorting operations followed by a number of multiplications,
making the decoder system slow or taking multiple cycles
for operating the merging operations. In order to provide
the ultralow-latency polar decoding, hence, it is necessary to
develop a cost-effective way for realizing the merging function
suitable for the massive-parallel processing.
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TABLE I

RATIO OF FROZEN PATTERNS IN THE 5G POLAR CODES [29]

TABLE II

RATIO OF FROZEN PATTERNS IN THE POLAR CODES FROM [30]

III. PROPOSED LOW-COMPLEXITY MU

A. Analysis of Frozen Patterns

To reduce the complexity of merging operation in Fig. 2,
similar to the concept of previous work [23], we investi-
gate the major patterns of frozen-bit positions for the given
polar code structure. For the sake of simplicity, let W j

denote the pattern value whose binary notation shows the
frozen patterns of p parallel leaf nodes each of which is
from the different sub-tree at the same time. More precisely,
W j = ∑p−1

k=0 w
j
k 2p−k−1, where w

j
k is 0 or 1 if the leaf node

V (k)m′, j is the frozen or information node, respectively. As
the frozen position provides the deterministic information, it is
possible to construct the dedicated functions for a different
pattern value W j . However, similar to solve (6) directly, it is
also impractical for preparing the dedicated functions for all
the possible W j . By observing the frequent W j values for
the given polar code structure, as described in the work from
[23], it is possible to narrow down the size of the problem
significantly, providing the practical processing scenario for
exploiting the tree-level parallelism.

Targeting the recent 5G polar codes in [29], for example,
Table I depicts the ratio of different W j values for designing
the 8-parallel SC decoder. Note that only nine patterns, i.e., 0×

00, 0 × 01, 0 × 03, 0 × 07, 0 × 17, 0 × 1F, 0 × 3F, 0 × 7F,
and 0×FF, comprise about more than 99% of 256 possible
frozen patterns by analyzing all the code rates defined in the
5G communication [29]. For the case of other polar code
structures constructed in 2.5-dB AWGN channel [18], [30],
similarly, Table II reveals that the selected nine W j patterns
from Table I also covers most of the practical cases. If we
change the parallel factor, it is still possible to find the
major frozen patterns by investigating all the possible cases
defined by the target system. When the 4-parallel decoding is
considered for decoding 1024-b 5G polar codes, for example,
only four patterns (0 × 0, 0 × 1, 0 × 7 and 0×F) account
for 98% of existing frozen patterns. Targeting the same 5G
codes, similarly, we can observe that 16 dominant patterns
cover more than 99% of total cases for realizing the 16-parallel
decoder. Therefore, it is clear that our approach can be applied
to support any parallel factor without loss of generality, finding
the major operations to be accelerated.

For the parallel factor of 8, which is used for realizing
the prototype decoder, it is interesting that we found the
same major patterns as the previous work from [23], uti-
lizing the ML-like operations to manage the selected pat-
terns simultaneously. Although the previous method partially
relaxes the merging complexity with early evictions of less
important candidates, however, the direct evaluation of (6)
for the survived patterns is still time-consuming, causing the
multicycle realization [23]. Moreover, the previous design
cannot accept the minor patterns, which occurred in the real
world depending on the construction ways of polar codes as
exemplified in Table I. In the proposed work, on the other
hand, we develop a novel method to handle the major patterns,
leading to the fast realization while even supporting any kind
of minor patterns.

B. Low-Complexity Merging Function

Inspired by the previous work for the serialized decoding
case [17], which also provides the dedicated functions for
reducing the complexity of ML-like operations only for the
pre-defined cases, we newly define nine dedicated functions
denoted as MW j (·) as summarized in Table III. Adopting the
dedicated functions, in other words, the hard-value vector is
directly calculated without evaluating the complex equations
of (6) when the current frozen pattern belongs to the selected
major patterns, i.e., T j = MW j (R j ). To simplify the expression
of these dedicated functions MW j , two primitive functions
denoted as yi = REPi(zi ) and yi = SPCi (zi ) are introduced,
where yi = [y0, y1, . . . , yi−1] and zi = [z0, z1, . . . , zi−1]
represent 1 × i hard-value and soft-value vectors, respectively.
Note that the function REPi(·) in the table represents the
repetition pattern of frozen positions and simply returns the all-
zero or all-one vector by examining yk = H (

∑i−1
l=0 zl), where

H (x) is 1 for x < 0 and 0 otherwise. On the other hand,
the function SPCi (·) is the same as the pruning operation of
the single-parity-check node defined in [17], and each element
of the output vector yi can be calculated as follows:

yk =
{

H (zk)⊕P(zi ), if |zk | = min(|z0|, . . . , |zi−1|)
H (zk), otherwise

(7)

Authorized licensed use limited to: Chungnam National University. Downloaded on July 23,2021 at 01:23:34 UTC from IEEE Xplore.  Restrictions apply. 



KAM et al.: ULTRALOW-LATENCY SC POLAR DECODING ARCHITECTURE USING TREE-LEVEL PARALLELISM 1087

TABLE III

DEFINITIONS OF THE DEDICATED MERGING FUNCTIONS MW j

where P(zi) = ⊕i−1
l=0 H (zl). Based on these primitive func-

tions defined above, note that we optimize each dedicated
function by considering the correlation of the soft input values
in R j as detailed in Table III.

In order to derive each dedicated function, we first simplify
the cost function (6) by considering the internal constraints
of the hard-estimate vector T j , which is defined by the given
frozen patterns W j . Then, it is possible to find the closed-
form to compute T j that maximizes the reformulated cost
function. When we observe the frozen pattern of W j = 0×03,
for example, an 1 × 8 binary vector of eight corresponding
decoded bits, denoted as û j = [û8 j+0, û8 j+1, . . . , û8 j+7],
should include zero bits depending on the frozen pattern,
i.e., û8 j+0 = û8 j+1 = û8 j+2 = û8 j+3 = û8 j+4 = û8 j+5 =
0. As the decoded bits can be derived by multiplying the
hard-estimate vector and the corresponding generate matrix,
i.e., û j = T j G⊗3, we can directly conclude that t j

0 = t j
2 =

t j
4 = t j

6 = û8 j+6⊕û8 j+7 and t j
1 = t j

3 = t j
5 = t j

7 = û8 j+7. If this
prior knowledge is applied to (6), the cost function C(R j , T j)

can be simplified as (1−2t j
0 )r j

0 +(1−2t j
1 )r j

1 +(1−2t j
0 )r j

2 +(1−
2t j

1 )r j
3 +(1−2t j

0 )r j
4 +(1−2t j

1 )r j
5 +(1−2t j

0 )r j
6 +(1−2t j

1 )r j
7 =

(1 − 2t j
0 )(r j

0 + r j
2 + r j

4 + r j
6 ) + (1 − 2t j

1 )(r j
1 + r j

3 + r j
5 + r j

7 ).
To maximize this simplified cost function, the estimated bits
t j
0 and t j

1 should be determined by the sign values of (r j
0 +

r j
2 + r j

4 + r j
6 ) and (r j

1 + r j
3 + r j

5 + r j
7 ), respectively. By using

the function REPi(·), this procedure can be finally represented
as [t j

0 , t j
2 , t j

4 , t j
6 ] = REP4([r j

0 , r j
2 , r j

4 , r j
6 ]) and [t j

1 , t j
3 , t j

5 , t j
7 ] =

REP4([r j
1 , r j

3 , r j
5 , r j

7 ]). As depicted in Table III, it is possible
to similarly define other dedicated functions for all the major
patterns W j .

Fig. 3. Proposed merging unit for 8-parallel SC decoding.

As we only realize the nine dedicated functions for major
patterns without solving the ML problem directly, the hard-
ware costs of merging operation can be remarkably reduced,
even allowing the single-cycle operation. If a minor pattern
is detected during the parallel SC decoding, it is categorized
into two 4-b frozen patterns. We simply utilize F(·) and
G(·) functions in (3) to generate 4-parallel soft messages
corresponding to the categorized patterns and then calculate
4-parallel hard-value estimates by utilizing 4-parallel ML-like
operations. In other words, we perform a divide-and-conquer
approach to handle the 8-b minor patterns, allowing one more
processing cycle than the major cases. However, the additional
overheads caused by these minor patterns can be negligible
if we consider the major patterns covering more than 99%
in practice as shown in Tables I and II. Therefore, the pro-
posed method focusing on the major patterns is a practi-
cal and effective way for realizing the massive-parallel SC
decoding.

C. Proposed MU Architecture

Fig. 3 illustrates the detailed architecture of the proposed
MU that accelerates the major leaf-node patterns, where p is
set to 8. In contrast that the previous work [23] still implements
the ML-like function associated with the reduced number of
candidates, we develop in this work nine processing paths,
each of which corresponds to the dedicated function depicted
in Table III, i.e., directly calculating the hard-estimate T j

from the soft-vector R j with simple procedures. Therefore,
the critical delay of each processing function, denoted as MW j

Fig. 3, is remarkably reduced when compared to that of the
prior design [23]. The output of the proposed MU is then
selected based on the current leaf-node pattern W j . Due to the
simple processing paths of dedicated functions, it is possible
to perform the proposed MU in only one cycle whereas the
previous MU architecture necessitates multiple cycles caused
by long critical delay [23].

When the minor patterns are detected during the parallel
decoding, however, it is inevitable to perform the ML-like
processing for merging the results from p sub-trees [20]. In
this case, we introduce a divide-and-conquer strategy to reduce
the size of ML-like processing. More precisely, the proposed
MU starts with p/2 F(x, y) operations in (3) for handling
the minor patterns, and an p/2-input ML-like function is
followed to determine the first p/2 bits at a time as shown
in Fig. 3. Then, the latter part is dealt with p/2 G(x, y, u)
operations followed by the same p/2-input ML-like function.
Fig. 4 shows the detailed architecture to solve the 4-input ML
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Fig. 4. Detailed architecture of ML-like function for minor patterns.

problem that supports all the minor patterns existing in the
proposed 8-parallel processing. Even though the maximum
number of candidates is now reduced from 256 to 16, handling
the ML problem in a naïve way is still complex due to the
serialized evaluation and sorting sequences [16]. Instead of the
straightforward realization, we present in this work an ML-
like function utilizing 16 dedicated functions each of which
is dedicated to a single 4-b minor pattern. Similar to the
dedicated functions for 8-b major patterns shown in Table III,
it is possible to derive a closed-form equation to obtain the
optimal solution for the fixed minor pattern. Due to the reduced
number of bits for denoting the given frozen-bit pattern, note
that the required logic-level complexity for realizing these
functions is naturally smaller than that for major cases, which
is acceptable at the practical parallel decoder. Note that the
ML-like function shown in Fig. 4 accepts the current frozen
pattern to select one of the 4-b estimates from 16 dedicated
modules, always providing the same results as the serialized
baseline SC decoding [4]. Inserting pipelined registers between
F and G operations, in order not to increase the critical delay,
we allow two processing cycles to manage the detected minor
patterns. Under the two-cycle processing, as shown in Fig. 3,
the hardware part for the p/2-input ML-like function can be
shared in a time-interleaved manner to minimize the additional
overheads, increasing the overall decoder complexity by less
than 1%. By applying dedicated processing paths for both
the major and minor cases, as a result, the proposed MU
successfully supports all the existing frozen patterns in the
given polar codewords.

Table IV shows the implementation results of MU designs
for 8-parallel SC decoding in a 28-nm CMOS technology,
where the previous architecture from [23] is modified to
support the single cycle processing for a fair comparison.
Due to the dedicated processing paths, as we expected,
the proposed MU reduces the critical delay by more than
30%. Considering the operating frequency of the typical polar
decoder architecture, which will be discussed in the following
sections, it is inevitable to insert pipeline registers at the prior
MU design, taking additional processing cycles even for the
major leaf-node patterns. Moreover, note that the previous
design for parallel-SC decoding cannot support minor patterns,
as it only focuses on the major patterns that are the only leaf-
node patterns of a certain polar code [23]. In the practical
applications, however, it is possible to observe few minor

TABLE IV

IMPLEMENTATION RESULTS OF MERGING UNITS

patterns as revealed in Table I, and the prior work should
include these patterns, increasing the processing delay further.

IV. PRUNING SCHEME FOR PARALLEL DECODING

A. Pruning Parallel Sub-Trees

In order to further reduce the processing latency of parallel
SC decoding, in this work, the concept of the previous pruning
method in [17] is modified and applied to reduce the number
of activated nodes at each sub-tree. As p leaf nodes should
be visited at the same time, it is important to make the same
pruning shapes to each parallel sub-tree, which is the basic
concept of the proposed parallel pruning scheme. Fig. 5 depicts
how the proposed parallel pruning is applied to the 4-parallel
(16, 9) SC polar decoding example, which is based on a set
of leaf nodes having the same positions in each sub-tree. For
each set including h = kp nodes, where k is a natural number,
we examine whether the frozen pattern of the constructed set
is matched to the pre-defined pruning patterns.

For developing the proposed parallel pruning method,
we selectively adopt the pruning patterns of the previous
pruning approach specialized for the serialized SC decoding
tree [17], [28]. More precisely, a new soft-value vector, which
is exemplified in Fig. 5, is constructed by combining four soft-
value vectors: A(0)1,1, A(1)1,1, A(2)1,1 and A(3)1,1. Note that
this combined soft-value vector is then identical to A1,1 of the
original SC tree. Therefore, the set for the parallel pruning
shown in Fig. 5 becomes consecutive leaves at the original
tree, and the previous pruning operations [17] can be applied
to eliminate this set without loss of generality. Considering
the complexity of the parallel pruning unit (PU), which will
be described in the following section, we only accept four
pruning patterns from [17], i.e., Rate-0, Rate-1, REP, and SPC
patterns. Note that we always choose the size of the pruning
set to be a multiple of p, so that the pruned sub-trees still
exploit the proposed tree-level parallelism associated with the
identical pruned structure. Combined with the massive-parallel
processing associated with the simplified merging function,
as a result, the proposed parallel pruning scheme offers the
ultralow-latency SC decoding algorithm by minimizing the
number of visited nodes even in the parallel decoding pro-
cedure.

B. PU Architecture

To support the proposed parallel pruning algorithm, we also
develop the parallel PU design whose internal architecture is
detailed in Fig. 6. The proposed PU supports four pruning
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Fig. 5. Example of pruning sub-trees for a 4-parallel SC polar decoding.

Fig. 6. Proposed pruning unit using tree architectures.

patterns of Rate-0, Rate-1, REP, and SPC cases, directly
decoding more than p bits at a time. Depending on the
polar code structure, we pre-define the processing sequence
reflecting the result of parallel pruning, which is managed
by the top-level controller. When the pruning operation is
activated, the proposed PU collects the current h soft-values
from p parallel sub-trees, generating Ai, j . The maximum
number of pruned nodes is selected by considering the tradeoff
between the hardware complexity and the number of removed
nodes with the parallel pruning scheme.

Similar to the proposed MU design, as depicted in Fig. 6,
we design dedicated processing paths for handling each prun-
ing pattern individually, relaxing the delay overheads caused
by additional PU logic. For the case of Rate-0 and Rate-
1 pruning patterns, more precisely, we can simply set the
output estimate vector as all zeros and sign bits, respectively,
requiring no additional hardware as reported in [17]. When
we observe REP and SPC patterns, on the other hand, it is
required to perform REPh(·) and SPCh(·) operations described
in Section III. To support these cases efficiently, as depicted
in Fig. 6, the REPh(·) and SPCh(·) operations are realized
by using tree architectures of additions and comparisons,
respectively. These trees are designed to support the max-
imum number of pruned nodes h, and the dummy inputs
are introduced when the input pattern has fewer nodes. As
the large-size tree-like processing in general requires a long
processing delay [17], as shown in Fig. 6, we allow an
additional processing cycle by inserting pipelined registers

in front of the tree architectures for SPC and REP nodes.
Implemented in a 28-nm CMOS process, the critical delay
of the parallel PU design becomes 0.6 ns, which is similar to
that of the proposed MU shown in Table IV. It is reasonable
that we can allow much more parallel inputs to PU architecture
with simple pruning patterns compared to the MU design with
complex leaf-node patterns, some of whose merging functions
take long processing delays due to the complex data-level
dependences as depicted in Table III.

V. PROPOSED PARALLEL PSC

A. Parallel Multibit Partial-Sum Update

To perform the G function shown in (3), the SC-based
polar decoder requires partial-sums computed by the prior
decoded bits. In the conventional serialized SC polar decoding,
the partial-sums can be directly generated by updating a
decoded bit to the partial-sum registers of each stage, which
stores the combined values from the previous decoded bits
[4], [24], [25]. As the proposed decoding method estimates
multiple bits in parallel, similar to the previous pruning-based
SC decoders [17], the naive implementation of (4) uses the
recursive partial-sum computation with additional processing
cycles, increasing the overall decoding latency [17]. To relax
the latency overheads for recursively updating partial-sums,
for decoding a polar code of N = 2m bits, the generate matrix
G⊗m can be partially reconstructed on demand by utilizing
the additional matrix generation (MG) unit to support the
multibit updates of the pruning-based serialized SC decoding
[27], [32]. Note that the N/2 registers are additionally utilized
to temporally store an 1 × N/2 binary vector, denoted as
S(x) = [s0(x), s1(x), . . . , sN/2−1(x)], for the single-cycle
parallel partial-sum updates (PSUs), where x represents the
index of the most recently updated bit (0 ≤ x < N). As
reported in [27], the pruning-based SC decoding generates t
estimated bits, and then the current partial-sum register S(x)
is updated to S(x + t) as follows:

S(x + t) = S(x) ⊕ [D(x + t) · IN, D(x + t) · IN] (8)

where D(x) = [d0(x), d1(x), . . . , dN/4−1(x)] is the (x%N/4)-
th row of G⊗log2 N/4. The 1 × N/4 vector IN is constructed by
placing t estimated bits in parallel. In general, N/4 is divisible
by t , and therefore we need to repeatedly allocate the estimated
bits to fill the N/4 positions of IN if t �= N/4. Fig. 7 illustrates
the previous PSC preforming (8), which is composed of an
MG module, a PSU module, and a crossbar network [27].
Instead of storing all the patterns of G⊗log2 N/4, it is possible
to generate the next row D(x + t) on demand from the current
one D(x) as follows:

D(x + t) = D(x) ⊕ [0, d0(x), d1(x), . . . , dN/4−1−t (x)] (9)

where the row-wise zero-vector 0 contains t elements. As the
value of t can vary depending on the size of pruned patterns,
as a result, we need to introduce a number of multiplexers at
the MG module as shown in Fig. 7. Note that the input size of
multiplexers is gradually increased up to 	log22tmax
, where
tmax is the maximally allowable bits to be decoded in parallel.
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Fig. 7. Previous partial-sum calculator for N -bit polar codes [27].

Fig. 8. Proposed low-cost parallel partial-sum calculator.

If we directly apply the prior PSC design for supporting
the tree-level parallelism, it is required to utilize p identical
PSC modules each of which is allocated to a single sub-tree.
To mitigate the complexity overheads, as depicted in Fig. 8,
we introduce the novel parallel SC architecture that can share
the MG unit providing a common row-wise vector D to
p PSU modules. This is mainly possible as the proposed
parallel sub-trees have an identical shape from the parallel
pruning method described in Section IV. As the size of the
sub-tree is smaller than that of the original decoding tree,
moreover, it is possible to realize the MG unit for taking care
of G⊗log2 N/4p , accordingly reducing the hardware complexity.
More precisely, we utilize only N/4 p flip-flops for MG unit,
and the maximum size of multiplexer for generating D(x + t)
is reduced from 	log22tmax
 to 	log22tmax/p
 as illustrated
in Fig. 8. Note that each PSU module handles 1 × N/2 p
partial-sum vector, thus the total complexity of p PSU modules
becomes identical to that of one PSU design for the original
decoding tree in Fig. 7. Therefore, the proposed design sharing
MG module effectively supports a single-cycle parallel partial-
sum computation for the parallel SC decoding, even reducing
the hardware costs.

B. High-Speed Partial-Sum Crossbar

When the typical line decoder architecture is used for
realizing the SC processing [4], it is necessary to properly
connect partial-sums to processing elements (PEs) by using

Fig. 9. (a) Conventional crossbar design for PE0. (b) Proposed architecture
reducing the multiplexer overheads.

the crossbar as depicted in Fig. 7, which normally utilizes a
wide-input multiplexer per each PE [24]. In order to realize the
single-cycle PSC without degrading the operating frequency of
the polar decoder, it is important to reduce the critical path that
starts from the crossbar to the corresponding PEs. Therefore,
it is required to carefully analyze the worst case, i.e., the
largest size of a multiplexer of crossbar design. Among total
q PEs, as PE0 works at every stage in line architecture, it is
well known that the conventional crossbar forces to PE0 having
the largest multiplexer [24]. Fig. 9(a) shows a simple example
of the previous method applied to the 8-PE line decoder for
32-b polar codes, which connects five partial-sum registers
to PE0 [24]. It is noticeable that the selection signal of the
5-to-1 multiplexer is determined by the current decoding stage,
and there are severe imbalances in terms of the accessing
counts on the connected partial-sum registers. For example,
as shown in the figure, s8 is accessed for all the decoding
stages, whereas s10 and s14 are only selected once at the last
stage (stage 5). Therefore, it is possible to reduce the number
of connected registers by additionally introducing 2log2 N−t

dummy registers dedicated only to PEs for processing the
t th stage. As exemplified in Fig. 9(b), for this case study,
the proposed method adds one more register s′

0 for handling the
last stage, which reduces the size of the input multiplexer for
PE0 from 5 to 4. For the case of longer polar codes, in general,
we can reduce the crossbar overheads for each PE by adding
the dedicated register from the last stage until it reduces the
number of inputs.

For supporting the SC decoding of 1024-b polar codes,
Table V compares different PSC architectures using the gen-
erate matrix reconstruction, which are equally implemented at
the speed of 950 MHz in 28-nm CMOS technology. Compared
to the previous architecture [27], the proposed MG module and
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TABLE V

IMPLEMENTATION RESULTS OF VARIOUS PSC ARCHITECTURES

crossbar design drastically reduce the number of registers as
well as the number of multiplexers by targeting the 8-parallel
SC decoding trees. Note that the proposed crossbar success-
fully relaxes the maximum size of multiplexer from 129-to-
1 to 6-to-1 with additional seven dummy registers for the
last three decoding stages, reducing the overall critical delay
by 10%. As a result, the proposed architecture significantly
optimizes both the hardware overhead and the delay, leading
to the cost-effective realization while supporting the single-
cycle PSU even for the multibit decoding scenario.

VI. SIMULATION AND IMPLEMENTATION RESULTS

A. Algorithm-Level Performance

To confirm the algorithm-level performances of the pro-
posed 8-parallel SC polar decoding, we simulated the error-
correcting performances of the proposed decoding algorithm
and compared it to the conventional SC polar decoding case.
More precisely, we evaluated bit-error-rate (BER) and frame-
error rate (FER), which are defined to the ratios of error cases
to the transmitted data in terms of bit and codeword levels,
respectively, where the channel condition is denoted as Eb/N0

for representing the ratio between the energy per bit and the
noise power spectral density. Fig. 10 illustrates the BER and
FER performances for decoding (1024, 512) 5G polar codes,
where each codeword internally includes a CRC-24 check
[29]. As the proposed parallel SC decoding fully considers
the frozen patterns even for the minor cases, it is obvious that
the error-correcting performances from the parallel processing
are identical to those of the baseline serialized SC decod-
ing. Considering the practical polar decoder implementation,
we additionally simulated BER and FER performances using
5 b fixed-point numbers [12], which are enough to represent
the internal values of the proposed parallel decoding process
allowing the negligible performance loss as shown in Fig. 10.

To show the impacts of the proposed parallel-SC algorithm,
as illustrated in Fig. 11, we then evaluated how much the
different optimizations affect the decoding latency in terms of
the processing cycles. For the fair estimation, we used the line
decoder architecture to evaluate different decoding schemes,
which consists of 512 PEs for 1024-b 5G polar codes [4]. Note
that the proposed tree-level parallelism associated with the
single-cycle merging functions definitely leads to the ultralow-
latency SC decoding for any code rate of 5G specification by

Fig. 10. BER and FER performances of different SC decoding algorithms
for (1024, 512) 5G polar codes.

Fig. 11. Latency evaluations of different SC decoding algorithms at the line
decoder architecture, including 512 PEs for 1024-b 5G polar codes.

Fig. 12. Block diagram of 8-parallel polar decoder architecture.

utilizing the parallel processing of small-sized sub-trees when
compared to the serialized algorithms [4], [14] and the state-
of-the-art pruning-based algorithm [33]. The proposed PSC
design further reduces decoding cycles by taking only one
clock cycle for updating the partial-sum registers in parallel
even compared to our latest work [28]. As a result, the fully
optimized parallel SC decoder necessitates only 131 clock
cycles to decode a 0.5-rate 1024-b 5G code, which is 15.4 and
1.32 times faster than the conventional SC decoding [4] and
our previous parallel algorithm [28], respectively.

B. Prototype Decoder

To evaluate the hardware-level improvements, we designed
and realized a prototype 8-parallel polar decoder in 28-nm
CMOS technology. As illustrated in Fig. 12, the prototype
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Fig. 13. Detailed architecture of the proposed decoding unit (DU).

decoder basically includes eight pairs of a decoding unit
(DU) connected to an internal buffer (BUFA). Managed by
the top-level tree controller (TC), we utilized the proposed
MU, PU, and PSC designs for supporting the proposed tree-
level parallelism effectively, which are precisely described in
the previous sections. Note that the final decoded codeword is
computed at the output generator (OG) followed by the output
buffer (BUFO).

During the parallel SC decoding steps, the k-th DU accesses
the current soft-vector A(k)i, j and partial-sums from the
corresponding BUFA and PSC, respectively, and generates
A(k)i+1,2 j and A(k)i+1,2 j+1. The generated soft-vectors are
then stored in the buffer for the case of intermediate node
processing. When the current node is the leaf of the pruned
parallel tree, on the other hand, the results are also transferred
to MU or PU for calculating the hard-estimate vector that
is transferred to PSC and OG modules. More specifically,
the output decoded bits are computed by multiplying the
hard-estimate vector T j or Bi, j by the generate matrix with
the proper size when the current leaf nodes in DUs are the
bottom nodes of parallel trees or intermediate nodes resulted
from the pruning operation, respectively. The selection of
the hard-estimate vector from MU or PU is managed by a
TC module that contains the control sequence of each code
structure by considering the current W j as well as the parallel
pruning results. Note that we use the pipelined registers before
calculating the output decoded bits, cutting the critical delay
for fast decoder realization as shown in Fig. 12. Targeting
(1024, 512) codewords, the prototype decoder successfully
supports eight decoding sub-trees in parallel, each of which
is mapped to a line-based DU architecture with 32 PEs as
depicted in Fig. 13 [4]. In order to optimize the processing
latency, in addition, the decoder introduces the parallel pruning
method up to 64 leaf nodes if the collected patterns from
parallel sub-trees belong to the pre-defined formats, i.e., Rate-
0, Rate-1, REP, and SPC cases. By reducing the critical delay
caused by some multiplexers having an excessive number of
PE inputs, the decoder can operate at the speed of 950 MHz
in 28-nm CMOS technology, occupying the silicon area of
0.18 mm2 as shown in Fig. 14.

From the conventional serial SC decoding in [4],
Fig. 15 illustrates how the proposed hardware-level optimiza-
tions gradually reduce the latency of processing operations
in (1024, 512) 5G polar codes. Note that the conventional
architecture only utilizes the PEs that serially generate the

Fig. 14. Layout of the proposed 8-parallel SC polar decoder.

Fig. 15. Latency reductions with the proposed optimization schemes.

decoded bit one by one, requiring a long decoding periods.
Adopting the proposed tree-level parallelism we can reduce
the required latency from PEs by a factor of p, however,
there are some overheads caused by MU and PSC operations.
The parallel pruning then allows reducing the number of
activated nodes, accordingly saving the decoding latency of
each processing module. The decoding latency is optimized by
using the proposed parallel PSC design, as depicted in Fig. 15,
finally reducing the overall decoding time by 93.4% compared
to the baseline decoding scheme [4].

To select acceptable configurations of the proposed parallel
decoding for a 1024-b polar code, we have also analyzed
the tradeoff between the decoding latency and the hardware
complexity according to the number of DUs and PEs per
DU as shown in Fig. 16. The decoding latency is gradually
reduced by increasing the number of DUs, i.e., increasing
the parallel factor, where each DU equally contains 32 PEs.
Similarly, for the fixed 8-parallel processing, it is obvious that
the decoding latency is reduced by adopting more PEs per DU
design as also reported in [4]. It is natural that we necessitate
more hardware resources to lower the processing latency, and
therefore it would be required to select the proper hardware-
level configurations by considering both the latency and the
complexity. Note that the 8-parallel decoder having 32 PEs
per DU successfully presents the attractive point, which is
used for the prototype design, reducing a sufficient amount of
processing delay with the acceptable complexity overheads.

Table VI summarizes the implementation results of different
SC polar decoders targeting a 1024-b polar code. For a fair
comparison, the processing latency is normalized to support
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TABLE VI

IMPLEMENTATION RESULTS OF SC POLAR DECODERS

Fig. 16. Tradeoff between the decoding latency and the hardware costs.

the code construction method used for the 5G system [29].
By adopting the proposed parallel decoder architecture, our
prototype design significantly reduces the number of decod-
ing cycles. More precisely, the proposed work takes only
133 processing cycles to decode a 1024-b codeword, which
shortens the decoding latency by 93.6%, 32.8%, and 56.8%
when compared to the conventional serialized SC decod-
ing [4], the recent pruning-based serial decoding [33] and
the previous 8-parallel decoding method with the serialized
PSC architecture [28], respectively. Considering the operating
frequency, as a result, the proposed design requires only
0.140 μs for decoding a 1024-b codeword, achieving the
shortest processing latency among the existing designs as
depicted in Table VI. The reduced latency of the proposed par-
allel architecture directly leads to the high-throughput design,
achieving the decoding throughput of more than 7.3 Gbps,
which is 1.91 times improvement even compared to the pre-
vious work having the same parallel factor [28]. Fig. 17 illus-
trates the evaluation chart showing the efficiencies of different
SC polar decoders by comparing the area efficiency and the
decoding latency. Note that the proposed design achieves the
ultralow-latency decoding operation by accelerating the major

Fig. 17. Evaluation chart of different SC polar decoder designs.

leave patterns at the parallel SC algorithm. At the same time,
the prototype design only occupies 0.09 mm2 due to the
reduced sub-tree sizes associated with the proposed hardware-
level optimization methods, clearly outperforming the other
related works in terms of area efficiency as depicted in Fig. 17.
Therefore, the proposed optimization methods successfully
offer practical ways for utilizing the tree-level parallelism,
achieving the ultralow-latency SC polar decoding.

VII. CONCLUSION

In this article, we have proposed novel optimization schemes
for realizing the ultralow-latency SC polar decoder using tree-
level parallelism. The proposed single-cycle MU significantly
reduces the processing delay by focusing on the major leaf-
node patterns while supporting the rarely occurred minor
patterns with recursive paths. Based on the previous pruning
philosophy for the serialized decoding, the proposed parallel
pruning generates the identical parallel sub-trees, minimizing
the number of visited nodes at the parallel SC decoding
scenario. The PSC architecture is finally introduced to sup-
port the single-cycle parallel update of partial-sum registers
without increasing the hardware complexity. By breaking
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prior bottlenecks to realize the massive-parallel architecture,
we successfully implement an 8-parallel SC polar decoder
in 28-nm CMOS technology, which overcomes the previous
state-of-the-art designs in terms of the decoding latency as
well as the hardware efficiency, leading to the ultralow-latency
error-correction solution especially for the lightweight wireless
communication systems.
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